Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
نویسندگان
چکیده مقاله:
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for primary diagnosis of heart disease by analytic use of heart sound signals is very valuable. In this paper, an automated method for classifying cardiac sounds using signals recorded from a phonocardiogram is presented. In the proposed method, the Mel frequency cepstral coefficients along with wavelet-based features are extracted from the heart sound signals. In the next step, the most informative features are selected using the Sequential Forward Floating Search (SFFS) algorithm. Finally, the selected feature set is fed into the classifier, support vector machines, to classify heart sounds. The performance of the proposed method was evaluated using a public dataset presented by the organizers of the the PhysioNet/CinC Challenge 2016. The proposed method provided an average MAcc of 88.15%, an average sensitivity of 92.74% and an average specificity of 83.56% in the classification of cardiac sounds. The results show that the proposed method has better performance than the best available methods and is a suitable tool in the analysis of heart sounds.
منابع مشابه
Classification of Normal and Abnormal Mammograms Based on Discrete Wavelet Transform and Support Vector Machine
Nowadays computer aided design / diagnosis plays a vital role in detection of breast cancer. This paper deals with an intelligent diagnosis system based on wavelet analysis and principle component analysis. Support vector machine classifi er is used to classify mammograms as either normal or abnormal. Abnormal mammograms are those which include mammograms containing masses and microcalcifi cati...
متن کاملModel of Differentiation between Normal and Abnormal Heart Sounds in Using the Discrete Wavelet Transform
Today, modern technology has provided more powerful tools to evaluate the information related to heart sounds that traditional tools like stethoscope cannot achieve. One of the most common methods used for listening and tracking the heart sounds is to record them with special devices. The recorded heart sounds is known as PCG (phonocardiogram) signal. It is a particularly useful diagnosis tool ...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملImage Classification by Combining Wavelet Transform and Neural Network
In this paper, we propose a method of classification of image by combining wavelet transform and neural network. Our main objective in this work is to achieve an optimal approach of classification by combining wavelet transform and neural network. The proposed scheme for successful classification is combination of a wavelet domain feature extractor and back propagation neural networks (BPNN) cl...
متن کاملTexture Classification Based On Empirical Wavelet Transform Using LBP Features
Automatic inspection systems become more importance for industries with high productive plans especially in texture industry. A novel approach to Local Binary Pattern (LBP) feature for texture classification is proposed in this system. At the first, the proposed Empirical Wavelet Transform (EWT) based texture classification is tested on gray scale and color images by using Brodatz texture image...
متن کاملMeasurement of the correlation coefficients between extracted features from CT and MR images
Introduction: Nowadays applying computer in image processing is being improved revolutionary for solving medical images deficiencies. Image features that are analysis in image processing show image information. The aim of the present study was to find correlation between CT- scan and MRI images' features. Materials and Methods: After data acquisition, applying...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 1- 12
تاریخ انتشار 2022-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023